(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
:(+(x, y), z) →+ +(:(x, z), :(y, z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / +(x, y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)